Diversity of Nonribosomal Peptide Synthetases Involved in the Biosynthesis of Lipopeptide Biosurfactants
نویسندگان
چکیده
Lipopeptide biosurfactants (LPBSs) consist of a hydrophobic fatty acid portion linked to a hydrophilic peptide chain in the molecule. With their complex and diverse structures, LPBSs exhibit various biological activities including surface activity as well as anti-cellular and anti-enzymatic activities. LPBSs are also involved in multi-cellular behaviors such as swarming motility and biofilm formation. Among the bacterial genera, Bacillus (Gram-positive) and Pseudomonas (Gram-negative) have received the most attention because they produce a wide range of effective LPBSs that are potentially useful for agricultural, chemical, food, and pharmaceutical industries. The biosynthetic mechanisms and gene regulation systems of LPBSs have been extensively analyzed over the last decade. LPBSs are generally synthesized in a ribosome-independent manner with megaenzymes called nonribosomal peptide synthetases (NRPSs). Production of active-form NRPSs requires not only transcriptional induction and translation but also post-translational modification and assemblage. The accumulated knowledge reveals the versatility and evolutionary lineage of the NRPSs system. This review provides an overview of the structural and functional diversity of LPBSs and their different biosynthetic mechanisms in Bacillus and Pseudomonas, including both typical and unique systems. Finally, successful genetic engineering of NRPSs for creating novel lipopeptides is also discussed.
منابع مشابه
Chemoenzymatic and template-directed synthesis of bioactive macrocyclic peptides.
Non-ribosomally synthesized peptides have compelling biological activities ranging from antimicrobial to immunosuppressive and from cytostatic to antitumor. The broad spectrum of applications in modern medicine is reflected in the great structural diversity of these natural products. They contain unique building blocks, such as d-amino acids, fatty acids, sugar moieties, and heterocyclic elemen...
متن کاملRegulation of cyclic lipopeptide biosynthesis in Pseudomonas fluorescens by the ClpP protease.
Cyclic lipopeptides produced by Pseudomonas species exhibit potent surfactant and broad-spectrum antibiotic properties. Their biosynthesis is governed by large multimodular nonribosomal peptide synthetases, but little is known about the genetic regulatory network. This study provides, for the first time, evidence that the serine protease ClpP regulates the biosynthesis of massetolides, cyclic l...
متن کاملPhylogenetic Study of Polyketide Synthases and Nonribosomal Peptide Synthetases Involved in the Biosynthesis of Mycotoxins
Polyketide synthase (PKSs) and nonribosomal peptide synthetase (NRPSs) are large multimodular enzymes involved in biosynthesis of polyketide and peptide toxins produced by fungi. Furthermore, hybrid enzymes, in which a reducing PKS region is fused to a single NRPS module, are also responsible of the synthesis of peptide-polyketide metabolites in fungi. The genes encoding for PKSs and NRPSs have...
متن کاملIdentification of a biosynthetic gene cluster and the six associated lipopeptides involved in swarming motility of Pseudomonas syringae pv. tomato DC3000.
Pseudomonas species are known to be prolific producers of secondary metabolites that are synthesized wholly or in part by nonribosomal peptide synthetases. In an effort to identify additional nonribosomal peptides produced by these bacteria, a bioinformatics approach was used to "mine" the genome of Pseudomonas syringae pv. tomato DC3000 for the metabolic potential to biosynthesize previously u...
متن کاملNonribosomal peptide synthesis and toxigenicity of cyanobacteria.
Nonribosomal peptide synthesis is achieved in prokaryotes and lower eukaryotes by the thiotemplate function of large, modular enzyme complexes known collectively as peptide synthetases. These and other multifunctional enzyme complexes, such as polyketide synthases, are of interest due to their use in unnatural-product or combinatorial biosynthesis (R. McDaniel, S. Ebert-Khosla, D. A. Hopwood, a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 12 شماره
صفحات -
تاریخ انتشار 2010